Rapid computation of prices and deltas of nth to default swaps in the Li Model

Mark Joshi, Dherminder Kainth

QUARC RBS Group Risk Management

Summary

- Basic description of an nth to default swap
- Introduction to the Li model
- Solutions: Importance Sampling
- Parameter hedging and why computing sensitivities are difficult.
- Solutions: Likelihood & Pathwise Methods
- Results

Nth to default swaps: Product definition

- In an nth default swap a regular fee is paid until n of a basket of N credits have defaulted, or the deal finishes.
- When the Nth default occurs a payment of
 - 1 R is made to the fee payer.
 - R = recovery rate of *n*th defaulting asset

Nth to default swaps: Product definition

a. n th Default occurs

b. n th Default does not occur

Spreads

The Li Model

- Defaults are assumed to occur for individual assets according to a Poisson process with a deterministic intensity called the *hazard rate*.
- This means that default times are exponentially distributed.
- Li: Correlate these default times using a Gaussian copula

Some Definitions

- Consider some security A. We define the default time, $\tau_{A\prime}$ as the time from today until A defaults.
- We assume the defaults to occur as a Poisson process
- The intensity of this process, h(t), is called the hazard rate.

The Pricing Algorithm: SetUp

Given a correlation matrix C we compute A such that

$$AA^T = C$$

Let $E(\tau, h)$ denote the cumulative exponential distribution function in τ given a fixed h:

$$E(\tau, h) = \mathbb{P}(t < \tau) = 1 - \exp(-\int_0^{\tau} h_j(t)dt).$$

 $E^{-1}(u,h)$ denotes its inverse for fixed h.

The Pricing Algorithm

- Draw a vector of independent normals, z
- Generate a set of correlated Gaussian deviates:

$$\mathbf{w} = A\mathbf{z}$$
.

Map to uniforms:

$$u_i = N(w_i)$$

Map to default times:

$$\tau_i = E^{-1}(u_i, h)$$

•Compute the cash flow in this scenario; discount back.

$$F(\tau_1, \dots, \tau_N) = P(D_n(\tau_1, \dots, \tau_N))[V_{\mathsf{prot}} + (1 - r_n)H(T - D_n(\tau_1, \dots, \tau_N))].$$

Importance Sampling

Intuitively: want to sample more thoroughly in the regions where defaults occur.

Look at a *k* th to default swap:

- Product pays a constant amount unless k defaults occur.
- •Restrict our attention to cases of k defaults.
- •By subtracting the constant, we can assume value is zero unless *k* defaults occur.

Importance Sampling

 General Strategy: alter the probabilities of default such that we always get k defaults. Each path is then"important"; compute prices.

 We then reweight the different contributions according to our changes to the probability measure

Designing the importance density when i = 1

Make the *i*th asset default before T with probability:

$$\frac{1}{(n+1)-i}$$

- Why? After i non defaults want all the remaining credits to have an equal chance of default
- Pick a uniform u_i. If:

$$u_i < \frac{1}{n+1-i}$$
 map u_i to a region where asset i defaults.

$$u_i > \frac{1}{n+1-i}$$
 map u_i a region where asset i doesn't default.

Designing the importance density when i = 1

Designing the importance density

$$0$$
 $\frac{1}{n+1-i}$ 1

•Look at the original default region for asset *i*

$$au_i < T \qquad \longrightarrow \qquad w_i < x \qquad \longrightarrow \qquad \sum_j A_{ij} z_j < x$$

- •For our first to default case: $a_{11}z_1 < x \implies z_1 < \frac{x_1}{a_{11}}$
- •Translate to uniforms: $p_1 = N\left(\frac{x_1}{a_{11}}\right)$

rst to Default occurs:

 \bullet u₁ maps to v₁ where: $\frac{v_1}{p_1} = u_1 n \implies v_1 = u_1 n p_1$

rst to Default doesn't occur:

•u₁ maps to v₁ where:
$$v_1 = p_1 + \frac{1 - p_1}{1 - \frac{1}{n}} (u_1 - \frac{1}{n})$$

We need to scale the contributions of these paths

First asset defaults: weight by np_1

Doesn't default: weight by
$$\frac{1-p_1}{1-\frac{1}{n}}$$

Suppose that we have dealt with the first (j-1) assets. The unmassaged default probability now depends on Z:

$$W_j < x_j$$
 if and only if $\sum_{i < j} a_{ij} Z_i + a_{jj} Z_j < x_j$.

However, as A is lower triangular we have

$$p_j = \frac{x_j - \sum\limits_{i < j} a_{ij} Z_j}{a_{jj}}$$

And repeat as before.

Computing Hazard Rate Sensitivities

 We hedge against changes in the hazard rates of the individual assets using "vanilla" default swaps.

 Naïve methods for determining hazard rate sensitivities (finite differencing)

$$\Delta = \frac{P(h_i + \epsilon) - P(h_i)}{\epsilon}$$
 or $\Delta = \frac{P(h_i + \epsilon) - P(h_i - \epsilon)}{2\epsilon}$

have severe limitations due to their (very) slow rate of convergence.

Computing Hazard Rate Sensitivities

First to default, 4 credits, 2 year deal Not a stress case!

Computing Hazard Rate Sensitivities

Fourth to default, 4 credits, 0.15 year deal

Why is Bumping problematic?

Very few paths will give multiple defaults a short time (e.g. 0.15 years). If obligors are uncorrelated,

Prob
$$n$$
 defaults = $(hT)^n$

We therefore need lots of paths, even for pricing.

When we compute sensitivities, bump one hazard rate.
 Very small change in the number of paths which now have n defaults compared to previously.

Why is Bumping problematic?

A CDS is similar to a barrier option, pay-out jumps according to whether Nth default is before or after deal maturity.

Value CDS =
$$\int P(D_n(\tau_1,\ldots,\tau_N))[(1-r_n)H(T-D_n(\tau_1,\ldots,\tau_N))\psi(\tau_1,\ldots,\tau_N)]d\tau_1\ldots d\tau_N.$$

When we differentiate the payoff w.r.t the hazard rates we get a δ function.

Sampling this by Monte Carlo is very hard.

Parameter Sensitivities Using Monte Carlo

Well-known techniques for computing Greeks by Monte Carlo include:

- •Likelihood ratio: differentiate the probability density function analytically, inside the integral.
- •The Pathwise Method: differentiate the Payoff.

 Generally believed not to apply to discontinuous payoffs
 - we show that it does apply.

Broadie-Glasserman

•Malliavin calculus: differentiation w.r.t. the underlying Brownian motion; not applicable here.

The Likelihood Ratio Method

Value of the option:

$$V = \mathbb{E}^{\mathbb{Q}}[F(S_T)] = \int F(S)\psi(S,\theta) dS$$

We can write the sensitivity w.r.t θ :

$$\frac{\partial V}{\partial \theta} = \int F(S) \frac{\partial}{\partial \theta} \psi(S, \theta) \, dS$$

No longer integrating against our Monte Carlo density! However, we can reintroduce it:

The Likelihood Ratio Method

$$\frac{\partial V}{\partial \theta} = \int F(S) \frac{\partial \psi(S, \theta)}{\partial \theta} \frac{1}{\psi(S, \theta)} \psi(S, \theta) dS$$
$$= \int F(S) \frac{\partial}{\partial \theta} \log \psi(S, \theta) \psi(S, \theta) dS$$

... To compute sensitivity we reweight the payoff with:

$$\frac{\partial}{\partial \theta} \log \psi(S, \theta)$$

The Pathwise Method

•The delta of an option with payoff $F(S_T)$ is:

$$\Delta = \frac{\partial V}{\partial S_0} = e^{-rT} \int F(S_T) \frac{\partial}{\partial S_0} \psi(S_T, S_0, \dots) dS_T$$

•For the case of a lognormal evolution we can show:

$$\Delta = \frac{\partial \psi}{\partial S_0} = -\frac{\partial}{\partial S_T} \left(\frac{S_T}{S_0} \psi \right)$$

Integrating by parts and eliminating the boundary term:

$$\Delta = e^{-rT} \int \frac{\partial F(S_T)}{\partial S_T} \frac{S_T}{S_0} \psi(S_T, S_0, \dots) dS_T$$

The Pathwise Method

•We are now differentiating the *payoff*!

Suppose we have a digital option:

$$(S_T) = H(S_T - K)$$

•Differentiate and we get a δ function

The Likelihood Ratio Method for nth Default Swaps

•Value of the CDS:

$$\int P(D_n)(1-r_n)H(T-D_n)\psi(\tau_1,\ldots,\tau_N)d\tau_1\ldots d\tau_N.$$

Differentiate w.r.t. i th hazard rate :

$$\frac{\partial V}{\partial h_i} = \int_0^T P(D_n)(1-r_n)H(T-D_n)\frac{\partial \psi(\tau_1,\ldots,\tau_N)}{\partial h_i}d\tau_1\ldots d\tau_N.$$

Applying Broadie/Glasserman's trick:

$$\frac{T}{i} = \int_0^T P(D_n)(1-r_n)H(T-D_n)\frac{\partial \log \psi(\tau_1,\ldots,\tau_N)}{\partial h_i}\psi(\tau_1,\ldots,\tau_N)d\tau_1\ldots d\tau_N.$$

The Likelihood Ratio Method for nth Default Swaps

 The calculation is straightforward for Gaussian copula and flat hazard rates:

$$\frac{\partial \log \psi(\tau_1, \dots, \tau_n)}{\partial h_i} = -(\rho^{-1} - 1)_{ij} \eta_j \frac{\partial \eta_i}{\partial u_i} \frac{\partial u_i}{\partial h_i} + \frac{1}{h_i} - \tau_i$$

where ρ is the correlation matrix and

$$\eta_i = \phi^{-1}(u_i) \qquad \frac{\partial \eta_i}{\partial u_i} = \sqrt{2\pi}e^{\frac{1}{2}\phi^{-1}(u_i)^2}$$

We differentiate the *discounted pay-off* w.r.t h_j (ignore the spreads for the moment):

$$F(\tau_1, \dots, \tau_N) = P(D_N(\tau_1, \dots, \tau_N))[(1-r_n)H(T-D_n(\tau_1, \dots, \tau_N))]$$

$$\frac{\partial F}{\partial h_j} = \frac{\partial F}{\partial \tau_j} \frac{\partial \tau_j}{\partial h_j}$$

where if the jth asset is the nth to default

$$\frac{\partial F}{\partial \tau_j} = \frac{\partial P}{\partial t}(\tau_j)[H(T - \tau_j)(1 - r_N)]$$
$$-P(\tau_j)[\delta(\tau_j - T)(1 - r_n) + H(\tau_j - T) \frac{\partial}{\partial t}(1 - r_n)|_{t = \tau_j}]$$

And zero otherwise.

The important terms are the second and third terms.

They correspond to:

- a. default time of j th asset crosses final maturity of the product.
- b. Upon bumping the *jth* hazard rate we alter which asset is the *nth* to default

Both result in a jump in value and hence a Delta function in the derivative.

 When differentiated these jumps in the payoff give rise to delta functions!

The delta functions make a bumped Monte Carlo converge very slowly. However, we can integrate these *analytically* to obtain

$$-P(T)\frac{\partial E^{-1}}{\partial h_j}\int \psi(\tau_1,\ldots,\tau_{j-1},T,\tau_{j+1},\ldots,\tau_N)d\tau_1\ldots d\tau_{j-1}d\tau_{j+1}\ldots d\tau_n.$$

As before we simply reintroduce it, the second term is now

$$\int \frac{(I\psi(\tau_{1},\ldots,\tau_{j-1},T,\tau_{j+1},\ldots,\tau_{N}))}{\psi_{n-1}(\tau_{1},\ldots,\tau_{j-1},\tau_{j+1},\ldots,\tau_{N})}
\psi_{n-1}(\tau_{1},\ldots,\tau_{j-1},\tau_{j+1},\ldots,\tau_{N}) d\tau_{1}\ldots d\tau_{j-1}d\tau_{j+1}\ldots d\tau_{n},$$

where I = 1 if t_j is the nth default time and zero otherwise.

Delta contributions from recovery rates

Two possible contributions: after sorting j th bond becomes (n-1)th or n th default.

Error in convergence for first to default on 4 assets, five year deal, 2 percent hazard rates, value of delta 2.015

Error in convergence for fourth to default on 4 assets, five year deal, 2 percent hazard rates, value of delta 0.01557

General Results

If we run a Monte Carlo simulation for n paths then the standard error is

$$\frac{\sigma}{\sqrt{n}}$$

where σ is the standard deviation.

In the following, we therefore plot the standard deviation of the result as a fraction of the result.

