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Nth to default swaps:
Product definition

e In an nth default swap a regular fee is paid until n of
a basket of N credits have defaulted, or the deal
finishes.

e When the Nth default occurs a payment of
1 — R is made to the fee payer.
R = recovery rate of mth defaulting asset



Nth to default swaps:

Product definition

a. n th Default occurs

Principal plus
accrued interest

° o o Du(ri,. .., 7N)
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Spreads Recovery Rate
b. n th Default does not occur
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The Li Model

o Defaults are assumed to occur for individual assets
according to a Poisson process with a deterministic
intensity called the hazard rate.

e This means that default times are exponentially
distributed.

e Li: Correlate these default times using a Gaussian
copula



Some Definitions

« Consider some security A. We define the default time,
T,, as the time from today until A defaults.

e We assume the defaults to occur as a Poisson process

e The intensity of this process, h(t), is called the hazard
rate.



The Pricing Algorithm: SetUp

Given a correlation matrix C we compute A such that

aaAl = ¢

Let E(7, h) denote the cumulative exponential distribution
function in t given a fixed h:

E(r.h) =Pt < 1) =1 — exp(— /OT h(t)dt).

E~1(u,h) denotes its inverse for fixed h.



The Pricing Algorithm

« Draw a vector of independent normals, z

« Generate a set of correlated Gaussian deviates:
w = Az.

« Map to uniforms:
u; = N(w;)

« Map to default times:
7 = E~1(u;, )

eCompute the cash flow in this scenario; discount back.

(11,...,7N) = P(Dn(11, .-, TN ) ) [Vorot+(1—rn) H(T'—Dn (11, . .., TN ))].
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Importance Sampling

Intuitively: want to sample more thoroughly in the regions
where defaults occur.
Look at a kth to default swap:

e Product pays a constant amount unless & defaults
occur.

eRestrict our attention to cases of k defaults.

*By subtracting the constant, we can assume value is
zero unless k defaults occur.



Importance Sampling

e General Strategy: alter the probabilities of default such
that we always get k defaults. Each path is then“important”;
compute prices.

e We then reweight the different contributions according to
our changes to the probability measure



Designing the importance density when /=1

Make the /th asset default before T with probability:
1
(n+1)—1

o\Why? After / non defaults want all the remaining credits to
have an equal chance of default

e Pick a uniform u. If:

1 . ]
u; < map u; to a region where asset / defaults.

n+1-—z1

w; > 1 map u; a region where asset / doesn‘t default.

n+1-—1




Designing the importance density when /=1

1 Conditional Engineered Probabilities of defaults
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Designing the importance density

@/ 777® @
0 1 1
n+1-—2

eL ook at the original default region for asset /
s < T — w; < T — ZA,,;J'Z]'<CB

]
Correlated N(0,1)
Gaussian
] L]
eFor our first to default case: a1121 <z = 21 < -~
11
: Zq
eTranslate to uniforms: pi =N (—)
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rst to Default occurs:

® U1 ® @ Artificial Prob.
Oi l 1 measure
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We need to scale the contributions of these paths

First asset defaults: weight by np1

Doesn't default: weight by 11_ Pl

Suppose that we have dealt with the first (j-1) assets. The
unmassaged default probability now depends on Z:

W; < z; if and only if > a;;Z;+a
1<

]]Z] < T

However, as A is lower triangular we have

Tj— > aijdj
1<J

Pj = 0.
JJ
And repeat as before.



Computing Hazard Rate Sensitivities

« We hedge against changes in the hazard rates of the
individual assets using “vanilla” default swaps.

« Nalve methods for determining hazard rate sensitivities
(finite differencing)

_ P(hi +¢) — P(hy) o A:P(hrl-e)—P(hz‘—e)
€ 2€

A

have severe limitations due to their (very) slow rate of
convergence.



Computing Hazard Rate Sensitivities

First to default, 4 credits, 2 year deal Not a stress case !
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Computing Hazard Rate Sensitivities

Fourth to default, 4 credits, 0.15 year deal

Hazard Rate Sensitivity
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Why is Bumping problematic ?

e Very few paths will give multiple defaults a short time (e.g
0.15 years). If obligors are uncorrelated,

Prob n defaults = (RT)"

We therefore need lots of paths, even for pricing.

e When we compute sensitivities, bump one hazard rate.
Very small change in the number of paths which now have n
defaults compared to previously.



Why is Bumping problematic ?

A CDS is similar to a barrier option, pay-out jumps
according to whether Nth default is before or after deal

maturity.

Value CDS =
/P(Dn(rl, oy, IND(Q=rn) H(T—Dyp (711, ..., 7n))V(11,...,7N)]dT .. . dTN.

When we differentiate the payoff w.r.t the hazard rates we
get a 6 function.

Sampling this by Monte Carlo is very hard.



Parameter Sensitivities Using Monte Carlo

Well-known techniques for computing Greeks by Monte Carlo
include:

oL ikelihood ratio: differentiate the probability density function
analytically, inside the integral.

eThe Pathwise Method: differentiate the Payoff.
Generally believed not to apply to discontinuous payoffs
— we show that it does apply.
Broadie-Glasserman

eMalliavin calculus: differentiation w.r.t. the underlying
Brownian motion; not applicable here.



The Likelihood Ratio Method

Value of the option:

v =EF(S)] = [ F(S)u(s,0)ds
We can write the sensitivity w.r.t 6:
oV o
— = | F(S)—uY(S,0)dS
o= | F()-v(S,0)

No longer integrating against our Monte Carlo density!
However, we can reintroduce it:



The Likelihood Ratio Method

v 89(S,0) 1
= /F(S) (S, 0) dS

20 (S,0)
= [ F(5) 5109 4(5,0)4(5, 6) ds

.. To compute sensitivity we reweight the payoff with:

0



The Pathwise Method

eThe delta of an option with payoff F(S;) is:
A OV 9

—rT
— T co— F S - S S e o o dS
950 € / ( T)aso¢( 7,50, --) dST

oFor the case of a lognormal evolution we can show:

B oxl B 0 /St
A_a—so__asT(sow)

eIntegrating by parts and eliminating the boundary term:

7 [ OF(ST)ST
89S,  So

A =¢ ¢(ST,S(),...)CZST



The Pathwise Method

o\We are now differentiating the payoff!

1.2

Digital Call Payoff
eSuppose we have | - R Al

a digital option:
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The Likelihood Ratio Method for nth Default Swaps

oValue of the CDS:
/ P(Dn)(1—rn) H(T—Dp) (71, ..., 7a5)dry . .. dry.

eDifferentiate w.r.t. /th hazard rate :

V[ P00 -y 2T )

— = drq...dTy.
h; O Oh; 1 N

Applying Broadie/Glasserman’s trick:

r

= /O L (DY) (1) H(T—Dy)

}

olog (7, ... ,TN)lb(Tl,

oh, e, TN)AT] .. ATy




The Likelihood Ratio Method for nth Default Swaps

eThe calculation is straightforward for Gaussian copula
and flat hazard rates:

dlog(ry,...,™)
Oh;

on; Ou; | 1
| — Ty
8’&7; 8hz' hi

= —(p~ ' —1)ijn;

where p is the correlation matrix and

ni = ¢ L (u;) on; = 27re%¢_1(u’i)2
311,7;



The Pathwise Method for nth Default Swaps

 We differentiate the discounted pay-off w.r.t h; (ignore the
spreads for the moment):

"(r1,--,7N) = P(Dn (71, -, TN DA =rn) H(T—Dn (71, .. ., 7N))]

8_F _ OF 0T
dh;  O7;Oh;
nvhere if the jth asset is the nth to default

OF 8P

87'j

(Tg)[H(T 7)(1 —7n)]
— P(mj)[0(7; —T)(1 —rn) + H(7; = T) %(1 — "“n)|t:7-j]

And zero otherwise.



The Pathwise Method for nth Default Swaps

The important terms are the second and third terms.

They correspond to:

a. default time of jth asset crosses final maturity of
the product.

b. Upon bumping the jth hazard rate we alter which
asset is the nth to default

Both result in a jump in value and hence a
Delta function in the derivative.



The Pathwise Method for nth Default Swaps

T I | I | I | I
Jump in Payofl: Asset 2 1s no
0.6 longer tirst to default
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« When differentiated these jumps in the payoff give rise to
delta functions !



The Pathwise Method for nth Default Swaps

The delta functions make a bumped Monte Carlo converge
very slowly. However, we can integrate these analytically
to obtain

_P(T)aE 1

/?70(7'1, s Tj—1, Iy Tjg1,- -, TN)ATL - dTj_1dTj 41 - . . dTn.

As before we simply reintroduce it, the second term is now

UY(T1, oy Tj—1, T Tjg 15 -+ TND)
Yp—1(T15- s Tj—1, Tj415 -+ > TN)
wn—l(Tla- .. 77-j—1a7_j—|—17- .. ,TN)dTl . .d’Tj_]_d'Tj_|_1 .. .d’Tn,

wherel =1 if .’ is the nth default time and zero otherwise.



Delta contributions from recovery rates

Two possible contributions: after sorting jth bond becomes
(n-1)th or nth default.

'n—1 Tn 'n+1
-@ o
Tn—1 ™
ontribution 1
'n—1 ‘ L Tn 'n+1
@
Tn—1 —|— 57—77,—1 Tn
6(Tp—1 —T)[((1 —7rn) — (L —7yp_1))P(T)]
ontribution 2
'n—1 Tn 'n+1
'
Tn—1 Tn + 07n

6(rn — TH[((1 —rpy1) — (L — 7)) P(T)]
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Error in convergence of first to default on 4 assets five year
deal, 2 percent hazard rates, value of delta 2.015
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Error in convergence of fourth to default on 4 assets five year deal, 2 percent
hazard rates, value of delta 0.01557
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Error in convergence for fourth to default on 4 assets, five year
deal, 2 percent hazard rates, value of delta 0.01557
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General Results

If we run a Monte Carlo simulation for n paths then the
standard error is
o

N

where ¢ is the standard deviation.

In the following, we therefore plot the standard deviation of
the result as a fraction of the result.



standard deviation of delta as a fraction of delta with varying
maturity for fourth to default with four assets with varying recovery
rates (protection leg only)
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standard deviation of delta as a fraction of delta with varying
maturity for fourth to default with four assets with varying recovery
rates (protection leg only)
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