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The New Smiles: US$
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The New Smiles: EUR
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The New Smiles: GBP
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The proposed solution (Take 1)

Stochastic-Volatility Extension of the LMM:

σ instt,T = kTgT − t

gT − t = a + bT − texp−cT − t + d



The proposed dynamics
dfi +α
fi +α = μi

αf,tdt +σi
αt,Tidzi

σi
αt,Ti = at + btT− texp−ctT − t + dt

dat = RSaRLa −atdt +σadza

dbt = RSbRLb −btdt +σbdzb

dlnct = RScRLc − lnctdt +σcdzc

dlndt = RSdRLd − lndtdt +σddzd

Edzidza = Edzidzb = Edzidzc = Edzidzd = 0

Edzadzb = Edzadzc = Edzadzd = 0

Edzbdzc = Edzbdzd = 0

Edzcdzd = 0



The crucial point

The stochastic drivers for the volatility and 
independent of the drivers of the forward 
rates. This allows to

• calibrate to caplets
• calibrate to European swaptions
• calibrate to co-terminal swaptions
• price derivatives easily and efficiently



What does the stochastic-
volatility look like?
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b stochastic
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a,b,c and d stochastic
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How well does it work? Fitting…
t = 2 year
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How well does it work? Theory…
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… and Reality

07
-M

ar
-9

6

21
-M

ar
-9

6

03
-A

pr
-9

6

18
-A

pr
-9

6

02
-M

ay
-9

6

15
-M

ay
-9

6

29
-M

ay
-9

6

0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

8.
5 9

9.
5

10

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

Im
pl

ie
d 

V
ol

at
ili

ty

Trade Date

Option Expiry

Historical Implied Volatilities (FRF)

35.00%-40.00%

30.00%-35.00%

25.00%-30.00%

20.00%-25.00%

15.00%-20.00%

10.00%-15.00%



Am Important Feature

• Coefficients time-independent
• Forward-rate corrections necessary to price 

caplets exactly are very small
èThe statistical properties of the caplet and 

swaption surfaces are time-homogenous
èThe Future looks like the present (and the 

recent past)



The problem
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Normal pattern for US $
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Excited pattern for US $
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Normal pattern EUR/DEM
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Excited pattern EUR/DEM
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Density of changes in implied volatilities
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The proposed solution

1. Choose a simple criterion to determine whether the 
swaption matrix is currently in the normal or excited 
state

2. The instantaneous volatility function for each forward 
rate can be described by either of these two functional 
forms:

σi
nt,Ti = at

n +bt
nT− t exp−ct

nT− t +dt
n

σi
xt,Ti = at

x +bt
xT−texp−ct

xT−t +dt
x



The proposed solution [ctd]

3. All the coefficients {an,bn,cn, dn} and {ax,bx,cx, dx} are 
stochastic, and follow the same Ornstein-Uhlenbeck
process described in the original work. Their processes are 
all uncorrelated with the forward rates

4.The transition of the instantaneous volatility from the 
normal to the excited state occurs with frequency ?n? x, and 
the transition from the excited state to the normal state 
with frequency ?x? n. Notice that both frequencies are risk-
adjusted and not real-world frequencies; and that 
?n? x+?x? n?1 



The proposed solution [ctd]

5.Since the same assumption of independence between the 
volatility processes and the forward rate processes is 
enforced, once again along each volatility path the problem 
is exactly equivalent to the deterministic case, apart from 
the fact that, at random times, the coefficients would 
switch from one state to the other



Features of the approach

This procedure successfully capture the most significant 
qualitative features highlighted by the empirical study. 
In particular

• the transition between states and the reversion to the 
two basic (normal and excited modes) is built into the 
model;

• the implied volatility distribution displays fatter tails 
than in the pure-diffusion case; and

• the explanatory power of the first eigenvector is lower 
than in the simple-diffusion case.



Features of the approach

• All the coefficients are time-independent –
the term structure of volatilities is time-
homogeneous

• Structural features of the swaption matrix 
do not change over time

• The future looks (statistically) like the past



The two-state volatilities
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Another example
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The Instantaneous Volatility Path
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The Instantaneous Volatility Path
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The Instantaneous Volatility Path
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The Instantaneous Volatility Path
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The investigation methodology

1. Choose the volatility parameters
2. Move the yield curve and the volatility 

forward by one day
3. Calculate the prices of the swaptions
4. Repeat from 2. and collect the changes
5. Construct eigenvalues and eigenvectors



Why looking at the eigenvalues?

• Naïve comparison between real-world and 
risk-adjusted world is not warranted

• In the limit the eigenvectors/eigenvalues are 
unchanged in a drift transformation



The old approach…
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The model volatility changes: new approach
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The model volatility changes:new approach
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Model and Real Skew

SKEW Real Model
1x2 0.767421 0.202036
1x5 0.529616 0.386044
1x10 0.868207 0.296187
3x3 1.421207 0.352619
3x5 0.443754 0.327331



Model and Real Skew

SKEW Real Real(I) Real(II) Model
1x2 0.767421 1.056023 -0.03201 0.202036
1x5 0.529616 0.515964 0.322293 0.386044

1x10 0.868207 1.260718 0.501672 0.296187
3x3 1.421207 1.36261 0.294108 0.352619
3x5 0.443754 0.375826 0.140795 0.327331



Model and Real Kurtosis

KURT Real Model
1x2 14.3935 11.43534
1x5 10.10832 15.01118

1x10 20.11422 17.20576
3x3 15.93261 17.2059
3x5 11.70314 21.18686



Model and Real Kurtosis

KURT Real Real(I) Real(II) Model
1x2 14.3935 16.09731 4.821323 11.43534
1x5 10.10832 10.27761 2.640147 15.01118

1x10 20.11422 11.99224 28.02998 17.20576
3x3 15.93261 12.06961 4.364113 17.2059
3x5 11.70314 8.457682 3.049932 21.18686



Eigenvectors: real data
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Eigenvectors:old approach 
Reversion and displacement
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Eigenvectors: new approach
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Why do we care?

What does a stochastic-volatility model really 
buy me?

• Pricing with a deterministic-volatility LMM
• The information from ‘gamma-vega’

• A stochastic-volatility model 
automatically ‘knows’ about gamma 

vega



Eigenvalues: real data
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Eigenvalues: model data
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“The fitting is just as good with a ‘simple’ 
SVLMM. Do I really care?”

• Perfect fitting to caplets can be obtained 
with an infinity of models

• All these models produce different prices
• Future shapes of the implied volatility 

surface will determine the prices will I will 
transact my future re-hedges

• Implicitly, all models assign a cost to these 
future re-hedges.



What constitutes a successful model?

• Risk-neutral pricing versus actuarial pricing: in the 
case of incomplete markets, perfect replication is 
impossible, and only partial hedging can be achieved

• If perfect replication is possible, I do not care about 
the future (real-world) realization of the underlying 
variable: I can ‘lock in’ the prices implied by the 
market

• If hedging is totally impossible, I must make my price 
on an actuarial basis. Statistical knowledge of the real-
world evolution becomes all-important



What constitutes a successful model?

• Reality is in between: we should hedge as 
much as possible, but recognize that our 
payoff replication will be imperfect

• The greater the difficulty in hedging, the 
more important the ability for a model to 
describe the real world behaviour of the 
unhedgeable quantities



Conclusions

The new approach:
• Lends itself to rapid evaluation of path-dependent products
• Allows rapid calibration to caplets and to the European 

swaption matrix
• Allows financially desirable exact calibration to the co-

terminal swaptions that underlie a given Bermudan
• Recovers the shape of the eigenvectors in a very 

satisfactory way
• Gives much better ratio of eigenvalues



Conclusions [ctd]

• Accounts for the sudden transitions observed in the market 
between volatility regimes

• Produces a very reasonable distribution of implied 
volatility changes

• Conditionally on one volatility path being realized, the 
problem is reduced to a deterministic volatility LMM, and 

the approach can therefore be used for practical pricing.


