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Abstract

We propose a two-regime stochastic volatility extension of the LI-
BOR market model that preserves the positive features of the recently
introduced (Joshi and Rebonato 2001) stochastic-volatility LIBOR mar-
ket model (ease of calibration to caplets and swaptions, e¢cient pricimg
of complex derivatives, etc.) and overcomes most of its shortcomings. We
show the improvements by analysing empirically and theoretically the real
and the model-produced change sin swaption implied volatility.

1 Introduction
1.1 The Literature and Modelling Context
Rebonato and Joshi (2002) have recently presented empirical work about the
changes in market implied volatility swaption matrices (see also Rebonato (2001)
and Rebonato (2003)). These empirical investigations can be pro…tably looked
at in the light of the stochastic-volatility extensions of the LIBOR market model
recently introduced by Joshi and Rebonato (2001), Andersen and Andreasen
(2000), Hagan et al (2003), among others. The common underlying modelling
philosophy is to posit a CEV process (possibly proxied by a displaced di¤u-
sion for analytic tractability) with superimposed uncertainty in the volatility
function modelled by means of one or more Brownian di¤usions. The empirical
…ndings convey a mixed picture of the adequacy of these modelling approaches.

To begin with the negative results, certain important features of the real data
are not captured by the proposed models: the empirical data indicates, for in-
stance, that the swaption matrix tends to oscillate between well-de…ned shape
patterns, with di¤erent, and sometimes quite short, transition periods. See
Rebonato and Joshi (2002). Such a behaviour is neither compatible with a sto-
chastic volatility model with constant reversion speed, nor with a jump/di¤usion
process (which does not produce, in its standard formulation, stochastic smile
surfaces), nor with any of the CEV extensions alluded to above. Linking the
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volatility in a deterministic manner to the stochastic forward rates could pro-
duce sharp moves in the level of swaption matrix, if the forward rates displayed
a discontinuous behaviour (as in Glasserman and Kou (2000) and Glasserman
and Merener (2001)). It is di¢cult, however, to see how a deterministic func-
tional dependence on the forward rates could give rise to a sudden change in the
shape of the swaption matrix. Possibly, a reversion level for the instantaneous
volatility that underwent almost instantaneous transitions between a number of
pre-de…ned values could provide a better description of the observed dynamics.
The reversion speed, however, would have to change signi…cantly (i.e. would
have to display a short-lived burst) when these transitions occur if one wants
to recover at the same time the di¤usive behaviour of the implied volatility in
’normal times’, and the quickness of the transition during ’crises’, as observed,
in particular, for USD.

Continuing with the ‘bad news’, the descriptive statistics of the empirical
changes in implied volatility strongly reject the hypothesis that the instanta-
neous volatility should follow a di¤usive (mean-reverting) behaviour. In partic-
ular, the empirical tails are far too fat when compared with the model-produced
ones. Furthermore, if one orthogonalizes the covariance matrix of the changes
in swaption implied volatilities (as in Rebonato and Joshi (2002)) the propor-
tion of the variability explained by the …rst principal component is signi…cantly
smaller in reality (about 60%) than with the model-produced data (about 95%).

Despite these shortcomings, Rebonato and Joshi show that the mean-reverting
stochastic-volatility approach they propose displays two important encouraging
features: …rst of all, the qualitative shape of the …rst eigenvector turns out to
bear a close resemblance with the corresponding empirical quantity. In partic-
ular, the same periodicity is observed in the real and model data. Second, the
decaying behaviour of the …rst principal component as a function of increasing
expiry, empirically observed when the real-data covariance matrix is orthogonal-
ized, is found to be naturally recoverable and explainable by the mean-reverting
behaviour for the instantaneous volatility. This feature in turn constitutes the
most salient characteristic of the Joshi-Rebonato stochastic-volatility extension
of the LIBOR market model. Furthermore, the values for the mean reversion
that had been previously and independently obtained using static information
(i.e. by …tting to the smile surface) turned out to be adequate to explain in a
satisfactory way the qualitative features of such dynamic features as the shape
of the eigenvectors (obtained from time series analysis). It is therefore fair to
say that, despite the obvious shortcomings, a modelling approach of the type
proposed by Joshi and Rebonato (2001) appears to be a useful …rst step in the
right direction, and we propose to extend this approach in the present work.

1.2 The Relevance of the Proposed Approach
Many approaches provide a …t to current prices of similar quality. Indeed,
Britten-Jones and Neuberger (2000) show that, given any stochastic-volatility
model, it is always possible to recover an exogenous set of market caplet prices
by adding a suitable local-volatility term. The main feature of the approach
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presented in this paper is therefore not a more accurate recovery of the empirical
smile surface today, but a more convincing description of the evolution of the
smile surface. It is not obvious, however, why a better stochastic-volatility
description of the dynamics of the swaption matrix should be per se a desirable
feature if, as shown below, the quality of the …t to market quantities (such
as smiley caplet prices) is virtually the same in the simpler version of Joshi
and Rebonato (2001). The answer lies in the practice of pricing and trading
of exotic options. Typically, even if the trader uses a deterministic-volatility
model, she will not simply carry out the delta-hedging predicted by the model,
but will also carry out vega hedges to neutralize her exposure to the changes
in the volatility surface. If the model used assumes deterministic volatility
this practice is clearly logically inconsistent, but it is nonetheless universally
adopted. The …rst requirement for the trader is therefore to recover the prices
of the hedging options used at trade inception to vega-neutralize the trade,
hence the importance given to the recovery of today’s smile surface. During
the life of the trade, however, the portfolio of the complex derivative and the
plain-vanilla hedges will in general not remain vega neutral, and the trader will
have to enter further vega-hedging trades. If the future state of the world at
the re-hedging times were fully compatible with the model used to price the
trade on day 0, this further hedging activity would have no economic e¤ect.
However, a second fundamental trading practice comes into play at this point,
ie the practice of re-calibrating the model every day during the life of the trade
so as to recover the then-current prices of plain-vanilla hedging options. In a
way, the trader recognizes every morning the error of her ways, re-calibrates the
model, and hedges as if from now on the re-calibrated model will be ’true’ for
the rest of the life of the trade.

The combined e¤ect of the theoretically inconsistent vega (re-)hedging and
re-calibration of the model therefore exposes the trader to future realizations of
the smile surface (ie, to the future prices of the re-hedging options). The main
criterion of success of a model, from the perspective of a complex -derivatives
trader, should therefore be its ability to predict, either in a deterministic or in
a stochastic manner, the current and future prices of the vega-hedging instru-
ments. We therefore propose that the main criterion to choose between models
which provide similar, good-quality …ts to today’s smile surface is their ability
to predict in a realistic manner the future re-hedging costs incurred in vega
hedging.

The extension of the stochastic-volatility extension of the LMM by Joshi
and Rebonato presented in this work should be seen in this light: we attempt to
provide a description of the smile surface dynamics that, by being more closely
aligned with empirical evidence, will provide a better pricing tool for traders by
implictly ’knowing’ better than other approaches about future vega-re-hedging
costs.
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2 Description of the Stochastic-Volatility LIBOR
Market Model

In order better to appreciate the changes brought about by the two-regime
stochastic-volatility LMM here introduced it is useful to recall brie‡y the re-
sults presented in Joshi and Rebonato (2001). One can start from the usual
deterministic-volatility (DV) LMM, and posit

¾(t;T ) = kT g(T ¡ t) (1)
g(T ¡ t) = [a + b(T ¡ t)] exp[¡c(T ¡ t)] + d (2)

where ¾(t;T ) is the instantaneous volatility at time t of the Tmaturity forward
rate, and kT is a forward-rate speci…c constant needed in order to ensure correct
pricing of the (at-the-money) associated caplet. Neglecting for the moment
smiles, if one denotes by ¾Black (T ) the implied volatility of the caplet of expiry
T , the caplet-pricing condition is ensured in the DV setting by imposing that

¾Black (T )2T
TR
0

g(u; T)2du
= k2

T (3)

When the instantaneous volatility is deterministic, this formulation allows to
determine the most time-homogenous evolution of the term structure of volatil-
ities and of the swaption matrix consistent with a given family of parametrized
functions g(T ¡ t) simply by imposing that the idiosyncratic terms, kT , should
be as constant as possible across forward rates. See, for a detailed discussion of
this point, Rebonato (2002) or Mercurio and Brigo (2001). Once this volatility
function has been chosen, the arbitrage-free stochastic di¤erential equation for
the evolution of the Ti-expiry forward rate in the Q-measure associated with
the chosen numeraire is given by

dfTi(t)
fTi(t)

= ¹Q(ffTj (t)g; t)dt + ¾(t; Ti)
X

k=1;m

bikdzQ
k (t) (4)

where dzQ
k are orthogonal increments of standard Q-Brownian motions, ¹Q(ffTj (u)g; u)

is the measure-, forward-rate- and time-dependent drifts that re‡ect the con-
ditions of no arbitrage, and the coe¢cients fbg, linked by the caplet-pricing
condition

P
k=1;m b2

ik = 1, fully describe the correlation structure given the
chosen number, m, of driving factors (see Rebonato (1999)).

In order to account for smiles, this standard formulation can be extended in
two ways:

i) by positing a displaced-di¤usion evolution of the forward rates according
to

d(fTi(t) + ®)
fTi(t) + ®

= ¹Q
® (ffTj (t)g; t)dt + ¾®(t; Ti)

X

k=1;m

bikdzQ
k (t) (5)
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and
ii) by making the instantaneous volatility non-deterministic via the following

stochastic mean-reverting behaviour for the coe¢cients a; b; c and d, or their
logarithm, as appropriate:

dat = RSa(RLa ¡ at)dt + ¾a(t)dza
t (6)

dbt = RSb(RLb ¡ bt)dt + ¾b(t)dzb
t (7)

d ln[ct] = RSc(RLc ¡ ln[ct ])dt + ¾c(t)dzc
t (8)

d ln[dt ] = RSd (RLd ¡ ln[dt ])dt + ¾d(t)dzd
t (9)

In Equations (6) to (9) all the Brownian increments are uncorrelated with each
other and with all the Brownian increments dzQ

k (t) and the symbols

RSa; RSb ; RSc; RSd; RLa; RLb ; RLc; RLd

denote the reversion speeds and reversion levels, respectively, of the relative
coe¢cients, or of their logarithms.

The introduction of the displacement coe¢cient ® (see Rubinstein (1983)
and Marris (1999) for the link with the CEV model) is intended to account for
the deviation from exact proportionality with the level of the basis point move
of the forward rates: this feature translates to a monotonically decaying (with
strike) component of the smile surface1 . In addition, the stochastic behaviour for
the (coe¢cients of) the instantaneous volatility is invoked in order to account
in a …nancially convincing way for the more recently observed ’hockey-stick’
shape of the smile curves. More precisely, given the econometric interpretation
that can be given to a; b; c and d, Equations 6 to 9 allow the initial slope, the
long-term level and the location of the maximum of the instantaneous volatility
functions to be stochastic.

The general strategy that can be followed to calibrate the stochastic-volatility
(SV) LMM presented above in an e¢cient way rests on three simple observa-
tions:

1. Given the posited independence between the forward rates and the sto-
chastic volatilities, conditional on a particular volatility path having been
realized the problem looks exactly like a standard (DV) LMM problem;

2. The Black formula is, at-the-money, almost exactly linear in the root-mean
square volatility;

1 It is customary to model this feature by means of a CEV approach (see, e.g. Andersen
and Andreasen (2000), or Zuehlsdor¤ (2001)). Marris (1999), however, shows that there
exists a close correspondence between the CEV and the displaced-di¤usion dynamics, and
that, once the two models are suitably calibrated, the resulting caplet prices are virtually
indistinguishable over a very wide range of strikes and maturities. Marris also provides a
thoeretical justi…cation as to why this should be the case. Joshi and Rebonato therefore use
the displaced-di¤usion setting, which, unlike the CEV case, allows simple closed-form solutions
for the realization of the forward rates after a …nite period of time, as a computationally simple
and e¢cient subsititute for the theoretically more pleasing CEV framework (which does not
allow negative forward rates).
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3. Joshi and Rebonato (2001) show that surprisingly few volatility paths are
su¢cient for an accurate sampling of the volatility probability density.

By making use of this approach Joshi and Rebonato show that it is simple
and computationally e¤ective to calibrate to caplets, to obtain the prices of a
swaption matrix, to calibrate in a …nancially desirable way to the co-terminal
swaptions that underlie a given Bermudan swaption and to price complex (path-
dependent) derivatives. Point 1 above (ie, the independence between the in-
crements of the volatility processes on the one hand on the processes for the
underlying on the other) is the key to obtaining such simple results2 .

It is important to stress that the forward-rate coe¢cients kT required in
order to ensure perfect pricing of the caplets are almost invariably found to be
very close to unity. This is important, because, given the time-independence
of all the coe¢cients above, this ensure that the evolution of the caplet and
swaption surface will almost exactly retain its statistical features in the future.
See the discussion in Joshi and Rebonato (2001) about this important point.

3 The Proposed Extension

How could one improve upon this approach in such a way as to retain its desir-
able features and to take into account the empirical evidence discussed in the
introduction?

The most salient missing features are probably

i) the ability to reproduce rapid transitions of the swaption matrix from one
’mode’ to another;

ii) the ability to return, after one such transition has taken place, to a similar
shape;

iii) the recovery of fatter tails in the distribution of changes of implied volatil-
ities (in agreement with empirical data); and

iv) a better apportioning of the total variance among the eigenvectors ob-
tained from orthogonalizing the changes in swaption implied volatilities.

A simple and natural way to model these features, while retaining the sim-
plicity and intuition behind the approach described above is the following. We
posit the existence of a latent variable, y, which follows a two-state Markov-
chain process between two states, x and n, with transition probabilities:

·
¸x!x ¸n!x
¸x!n ¸n!n

¸
(10)

and which can only take up the values 1 (if state n prevails) or 0 (if state x
prevails). The pricing procedure is then as follows.

2 This does not mean that there can be no relationship between the forward rates and the
volatilities, but that this has been fully captured by the CEV (DD) treatment.
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1. One can begin by choosing a simple criterion to determine whether the
swaption matrix is currently in the normal or excited state. Looking at
the …gures in Rebonato (2002) one such criterion could be whether the
n-year-into-1-year series displays a hump or not.

2. There exist two instantaneous volatility functions for each forward rate,
described by these two functional forms:

¾n
i (t; Ti) = [an

t + bn
t (T ¡ t)] exp(¡cn

t (T ¡ t)) + dn
t (11)

¾x
i (t; Ti) = [ax

t + bx
t (T ¡ t)] exp(¡cx

t (T ¡ t)) + dx
t (12)

with di¤erent coe¢cients fan ; bn; cn; dng and fax; bx; cx ; dxg associated
with the normal (superscript n) and excited state (superscript x).

3. At any point in time the instantaneous volatility for forward rate i, ¾i(t; Ti),
is given by

¾ i(t; Ti) = y¾n
i (t; Ti) + (1 ¡ y)¾x

i (t;Ti) (13)

4. All the coe¢cients fan; bn; cn; dng and fax ; bx ; cx; dxg are stochastic, and
follow the same Ornstein-Uhlenbeck process described in the original work
by Joshi and Rebonato. Their processes are all uncorrelated with the
forward rates.

5. The transition of the instantaneous volatility from the normal to the ex-
cited state occurs with frequency ¸n!x , and the transition from the ex-
cited state to the normal state with frequency ¸x!n: Notice that both
frequencies are risk-adjusted and not real-world frequencies:

6. Since the same assumption of independence between the volatility processes
and the forward rate processes is enforced, once again along each volatil-
ity path the problem is exactly equivalent to the deterministic case, apart
from the fact that, at random times, the coe¢cients would switch from
one state to the other.

7. Because of 5., the evaluation of the variances or covariances along each
path proceeds exactly as described in Chapter 12, with possibly di¤er-
ent coe¢cients ’half-way through’ some of the paths if a transition has
occurred. The evaluation of caplets and European swaptions would be
practically unaltered.

4 Empirical Tests
4.1 Description of the Test Methodology
In order to test the e¤ectiveness of the procedure proposed above we began by
studying the qualitative behaviour of a two-regime stochastic-volatility LMM
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by choosing the two instantaneous volatilities functions (normal and excited)
depicted in Fig 1. For our tests we chose the swaption data described in de-
tail in Rebonato and Joshi (2002). The reason for using swaption rather than
caplet data is also explained in Rebonato and Joshi (2002). With this data we
implemented an adaptation of their algorithm , as follows:

² we …tted the parameters of the normal and excited volatility curves so as
to obtain a best-…t to the market caplet smile surface (see the parameters
in Tab I), given the transition probabilities ¸n!x ; ¸x!n required to give
an acceptable recovery of the relative weights of the …rst three eigenvalues
(see the discussion in Section 4.2.4);

² we evolved the an(x); bn(x); cn(x); dn(x) coe¢cients thus obtained from to-
day’s state over a simulation period of one week;

² we evolved the forward rates over the same one week period;

² given this world state we priced the at-the-money swaptions and obtained
their implied volatilities;

² we repeated we procedure over a large number of time steps, thereby
creating a time series of model implied volatilities for the swaptions

² these quantities were then compared with the market data.

The following observations are in order:

1. In order to limit the number of degrees of freedom, we did not treat
all the an(x); bn(x); cn(x); dn(x) coe¢cients as fully free-…tting parameters;
instead we started from ’plausible’ shapes for the ’normal’ and ’excited’
instantaneous volatility functions and locally optimized the parameters
around these initial guesses;

2. The test was run by …tting to caplet data and then exploring swaption
data. No best-…t to swaption-related quantities was attempted in the
choice of an(x); bn(x); cn(x); dn(x) . The test is therefore quite demanding,
in that it requires a satisfactory description of the evolution of swap rates
using parameters estimated on the basis of forward-rate information alone.

3. The levels and shape of the normal and excited volatility curves applied
to the risk-neutral world and not to the real-world measure. The same
consideration applies to the frequency of transition from one state to the
other. Therefore no immediate conclusions can be drawn from these val-
ues. We shall nonetheless present an order-of-magnitude comparison of
the transition frequency.

4. Fits to caplet prices of very similar (and very good) quality can be ob-
tained with di¤erent parameters for the normal and excited coe¢cients.
Therefore recovery of the caplet prices is a poor criterion to choose be-
tween di¤erent instantaneous volatility curves. We suggest below that an
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analysis of the kurtosis of the changes in implied volatilities and of the
eigenvalues behaviour can provide a better criterion.

5. Statistical estimates of kurtosis are in general very noisy, and, anyhow,
cannot be directly compared with the model values. This is because the
model kurtosis will depend on the transition probability, and the …tted
quantity is risk-adjusted (ie, pertains to the pricing measure, not the real-
world measure). Therefore we did not attempt a …t to the kurtoses for
the various swaption series. However, we present below the real and risk-
adjusted values for a qualitative comparison. A meaningful comparison
across measures can however be carried out by looking at the eigenvalues
and eigenvectors. See Section 4.2.4.

4.2 Results
4.2.1 The Real and Model Path of Implied Volatilities

Figs 2 and 3 display time series of the changes in instantaneous and implied
volatilities for a 5 x 5 constant-maturity swaption obtained using the procedure
described above and the best-…t parameters in Tab. I. It is clear that the
proposed process produces regime shifts also in the implied volatility changes,
with most changes being ’small’, and a relatively smaller fraction very high.
This result in not a priori obvious, since implied volatilities are linked to the
root-mean-squared instantaneous volatility, and regime changes in the latter
could have been ’washed out’ after the integration. Figs. 4 and 5 then shows
time series for one of the empirical time series of implied volatilities, showing the
qualitative similarity between the model and real-world data. Also in this case,
the time spent in the normal and excited states in the real and risk-adjusted
world cannot be directly compared, because of the risk-adjusted nature of the
quantities (the level of the volatility curves and the frequency of the jump) that
enter the pricing of caplets.

4.2.2 Recovery of Market Smile Surface

The quality of the …t to the market smile surface (USD data for date here) is
shown in Fig. 6. The …t was obtained by choosing beforehand values of the
transition probabilities that would produce acceptable ratios for the eigenvalues
obtained by orthogonalizing the implied volatility model covariance matrix. See
the discussion in Section 4.2.5. (Recall that the purely di¤usive Joshi and
Rebonato model loaded more than 95% of the explanatory power onto the …rst
eigenvector). With these transition probabilities the coe¢cients for the normal
and excited volatility curves were then obtained as described above.

The …t was obtained with time-independent coe¢cients, and therefore the
resulting swaption matrix displays a desirable time-homogenous behaviour.

This …t should be compared with the …t obtainable with a regime switch
between purely deterministic volatilities. This important feature is discussed in
Section 5.
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4.2.3 Kurtosis

The Table Kurt shows the kurtosis for our two-regime model for the several
swaptions using the parameters listed above for the two instantaneous-volatility
states and the jump intensities given above. Note that these values of kurtosis
are substantially larger than the kurtosis that would be obtained using a single-
regime stochastic-volatility LMM, and much closer to the values observed in the
market. The usual caveats about the change of measure apply. Since the true
distribution of the changes in implied volatility is not known a priori it is not
possible to associate statistical error bars to the experimental values. However,
in order to give an idea of the possible dispersion Table KURT2 displays the
real-world estimates obtained using the …rst and second half of the available
data.

4.2.4 Skew

No attempt was made to reproduce the skew of the distribution of the change in
implied volatilities. Nonetheless Table SKEW shows a good agreement between
the model (theoretical) and real world quantities. The same observations about
the statistical error bars and the change of measure hold, and again the estimates
obtained using the …rst and second half of the data are presented (see Table
SKEW2).

4.2.5 Eigenvalues and Eigenvectors

Rebonato and Joshi (2002) argue that a comparison between the eigenvectors
and eigenvalues estimated from real-world data and simulated by the model is
a powerful tool to assess the quality of a model in general, and to overcome
the di¢culties in comparing real-world and risk-adjusted quantities. One of
the main results of the work presented in Rebonato and Joshi (2002) was that
the simple stochastic-volatility model produced a good qualitative shape for the
eigenvectors obtained from the orthogonalization of the covariance matrix of the
changes in implied volatilities. The relative size of the eigenvalues, however, in
the original model was at variance with what observed in reality.

In order to investigate the dynamics of our new model, the changes in the
arti…cial time series generated as described above were used to generate a covari-
ance matrix. Unfortunately, the introduction of the risk-ajusted proabilities of
transition between states destroys the measure-independence of the eigenvecots
and eigenvalues. This is easy to understand: a non-zero transition probability
between the normal and excited state will change the relative weight of the var-
ious eigenvectors; the transition probability used for pricing, however, contains
a risk adjustment, and therefore the eigenvecors/values are measure-dependent.
Therefore, simply by observing that the new eigenvectors and eigenvalues are
in closer agreement to the empirical data, one cannot directly conclude that the
model is better. Suppose, however, that a better agreement is found, ie that the
model eigenvectors higher than the …rst are found to be more important than
in the purely di¤usive case. This ’improvement’ could be misleading only if the
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aversion to transition risk had the e¤ect of making investors more ’afraid’ than
actuarially justi…able of parallel moves in the swaption matrix, than of other
modes of deformation. This is however counterintuitive and …nancially di¢cut
to justify. We therefore belive that the comparison between the eigen-structures
is therefore at least qualitatively meaningful.

After diagonalization of the covariance matrix, we examined both the magni-
tude of the …rst few eigenvalues and the form of the corresponding eigenvectors.
See Figures 7 and 8. Notice how the qualitative shape of the eigenvectors is
recovered not only for the …rst but also for the second and third. (Rebonato
and Joshi discuss why it is correct to compare model and real-world eigenvalues
and eigenvectors).

We were also interested in obtaining a distribution of the eigenvalues such
that there was a signi…cant fraction of the spectral weight in the second/higher
eigenvalues, because failure to do so was of the main shortcomings of the model
in Rebonato and Joshi (2002). In the original approach almost all of the spectral
weights, #, de…ned via:

#i =
¸iP
¸k

(14)

were concentrated in the …rst eigenmode (#1 ~ 97%). If we were to compute
the spectral weights for our two-state jumpy model under the assumption that
the jump rates are equal at approximately one jump per year from the normal
to the excited state and vice versa we noticed that we would obtain a very
similar picture of the dynamics to that obtained within the one-state model i.e.,
more than 95% of the spectral weight would be concentrated in the …rst mode.
However, upon setting the jump intensities to values more similar to the real-
world jump rates, we found a very di¤erent behaviour. The relative magnitude
of the real-world jump rates can be approximately estimated from the empirical
observation that the majority of time is spent in the unexcited state; and that
then approximately once a year the curve jumps into the excited state in which
it stays for approximately 2 - 3 weeks after which it returns to the unexcited
state. This suggests real-world jump intensities of approximately 1(jump/year)
from the lower to the upper state and of approximately 20 from the upper state
to the lower.

If we take this order-of-magnitude estimate in the real world as appropriate
for the risk-adjusted frequencies, we get far more promising results: the second
eigenvalue now has ~12% of the spectral weight, and it takes four eigenvectors
to ’explain’ more than 99% of the observed variability. This is illustrated in
Figs 9 and 10.

Despite the fact that reality (see Fig. 9) is still considerably more complex,
we consider this new feature a signi…cant improvement, because it will have a
direct bearing on the future possible shapes of the implied volatility surface. We
have argued in Section 2 why, given the practice of vega-rehedging and model
recalibration, this ability to generate complex realistic future changes in the
smile surface should be of great importance.
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5 How Important Is the Two-Regime Feature?
Whenever a new modelling feature is introduce it is important to ascertain to
what extent the better …t to available data is simply obtained by virtue of
having more parameters at one’s disposal, or because new meaningful features
have indeed been introduced. In order to answer this question, a very stringent
test has been carried out3 . We have a priori chosen two instantaneous volatility
functions, one for the normal and one for the excited state, with an overall shape
consistent with the …nancial justi…cation discussed above: a lower-level humped
curve, and a higher monotonically decaying curve. Each volatility curve was
assumed to be deterministic. The parameters of these curves were not …t in
any way to current market data. We then rescaled the precise level of each
curve by a positive constant. These two scaling factors were the …rst two …tting
parameters. The second two …tting parameters were the transition probabilities
¸n!x ; ¸x!n. So, we only had at our disposal four parameters (two scaling
constants and two transition probabilities to …t a full smile surface spanning
maturities form 1 to 15 years.

Some of the combinations of parameters used are shown in Tab. DetVol,
and Fig 11 shows the corresponding instantaneous and implied volatilities for
the normal and excited states obtained from the parameters in the …rst column.

The results of this much-simpli…ed …t are shown in Fig 12. The parameters
in the …rst column in Tab DetVol were used. The …ts obtained with the other
sets of parameters were of very similar quality, showing that the …t does not
depend on the …ne features of the chosen volatility functions, but on the overall
…nancial mechanism based on the regime switch.

It is clear that, despite the fact that the …t is far from perfect, many of the
qualitative features of the real-world data are correctly recovered. Furthermore,
the relative levels of the normal and excited volatility states turned out to be
consistent with the …nancial interpretation given to these two quantities; and the
(risk adjusted) transition probabilities ¸n!x ; ¸x!n were also naturally found to
imply a lower probability of transition from the lower to the excited state than
vice versa.

We want to stress that a better …t could clearly have been obtained by
optimizing over the parameters that control the shape of the normal and excited
volatility curves, but this was not the purpose of the exercise. Actually, Tab
DetVol shows that, even by starting from …nancially plausible but otherwise
rather di¤erent initial guesses for the volatility curves, …ts of similar quality,
and with similar scaling and transition parameters were found. This should be
an indication of the robustness of the approach.

We can therefore conclude that, while further modelling ‡exibility is proba-
bly required to obtain an accurate …t to today’s smile surface, the two-regime
feature should be taken as an important part of the description of the smile
surface.

3 Numerical help by Mark Joshi is gratefully acknowledged.
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6 Conclusions
We have presented a simple two-regime stochastic-volatility LIBOR market
model. Its main positive features are:

² it retains the features of fast convergence, simple and e¢cient pricing of
interest-rate derivatives, and fast calibration to the caplet and swaption
markets enjoyed by the simple stochastic-volatility model introduced by
Rebonato and Joshi (2001) and Joshi and Rebonato (2002);

² it produces high-quality …t to the market data in a manner that is …nan-
cially justi…able. Since this …t is obtained with time-independent parame-
ters, and the forward-rate speci…c coe¢cients necessary to ensure perfect
pricing of the caplets are very close to 1, the statistical properties of the
volatility surfaces are time stationary, and the future ’looks’ (statistically)
like the present;

² the eigenvectors are recovered as well as with the simple stochastic-volatility
model (and in good agreement with the real world). The relative sizes of
the eigenvalues obtained with the jumpy model displays a marked im-
provement: the …rst eigenvalue is still too big, but the second is now
approximately …ve times larger;

² the kurtosis and the skew of the distribution of the changes in the implied
volatilities show good agreement with the real-world data;

² when a simple …t to today’s smile surface was attempted starting from two
simple deterministic volatility function, an acceptable …t for the whole
surface was found even by using as few as four parameters, suggesting
that the two-regime feature should be taken as an important part of the
description of the smile surface.

Overall, we believe that the proposed approach can provide a realistic and
practically useful description of the dynamics of forward rates and of their
volatilities.

13



BIBLIOGRAPHY
Andersen L, Andreasen J, (2000), ’Volatility Skews and Extensions of the

LIBOR Market Model’, Applied Mathematical Finance, 7, March, 1-32

Britten-Jones M, Neuberger A, (1998) ‘Option Prices, Implied Price Processes
and Stochastic Volatility’, London Business School working paper, available at
www.london.edu/ifa

Glasserman P, Kou, S.G (2000) ‘The Term Structure of Simple Forward
Rates with Jump Risk’ – Working paper - Columbia University

Glasserman P, Merener N, (2001) ‘Numerical Solutions of Jump-Di¤usion
LIBOR Market Models’ (2001), Working paper, Columbia University

Joshi M, Rebonato R, (2001) ‘A Stochastic-Volatility, Displaced-Di¤usion
Extension of the LIBOR Market Model’, QUARC (Quantitative Research Cen-
tre) working paper available at www.Rebonato.com, and accepted fo rpublica-
tion in Quantitative Finance, 2003

Marris D., (1999) ‘Financial Option Pricing and Skewed Volatility’, M. Phil
thesis, Statistical Laboratory, University of Cambridge, 1999

Rebonato R (1999) “On the Simultaneous Calibration of Multi-Factor Log-
Normal Interest-Rate Models to Black Volatilities and to the Correlation Ma-
trix”, Journal of Computational Finance, Vol. 2, 4, 5-27 and QUARC (Quanti-
tative Research Centre) Working Paper available at www.Rebonato.com

Rebonato R, (2003) ’Which Process Gives Rise to the Observed Dependence
of Swaption Implied Volatilities on the Underlying’, accepted fro publication in
International Journal of Theoretical and Applied Finance’

Rebonato R, Joshi M (2002) ‘A Joint Empirical/Theoretical Investigation of
the Modes of Deformation of Swaption Matrices: Implications for the Stochastic-
Volatility LIBOR Market Model’, International Journal of Theoretical and Ap-
plied Finance, 5, (7) 667-694 and Working Paper, QUARC (Quantitative Re-
search Centre), available at www.rebonato.com

Rubinstein M, (1983), ‘Displaced Di¤usion Option Pricing’, Journal of Fi-
nance, 38, March 1983, 213-217

Zuehlsdor¤, C, (2001), ‘Extended LIBOR Market Models with A¢ne and
Quadratic Volatility’, Working Paper, Department of Statistics, Rheinische Friederich-
Wilhelms-Universitaet, Bonn, Germany

14


