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The Context

• Process-based pricing
• Evolution of Smile Surfaces
• Schoenbucher’s approach
• The ‘thermodynamics’ of option pricing
• The concept of model-independent arbitrage
• Links with Merton’s theory of rational option pricing



Relevance and Possible Applications

• Understanding of essential features of models 
producing non-flat smile surfaces

• Defining in a precise fashion concepts such as 
‘floating smile’, ‘forward-propagated smile’, etc, and 
identifying the class of processes that can produce 
such smiles

• Trying to apply these results to 
– Static replication
– Pricing of ‘forward-starting’ options



The Temptation

• How traders actually use process-based models, and 
how they assess their quality

• The problem of ‘forward-starting’ options
• A practitioner’s solution



STATEMENT OF THE PROBLEM:

Products sold into the equity-linked investment market generally have a number of forward starting 
option features, these can be difficult to model and risk manage.

Pricing Forward Starting Options (from D Samuel)
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Pricing Forward Starting Options (from D Samuel)

Can we establish characteristic ‘finger-prints’ for the shape of the implied volatility surface and use these to 
analyse model generated forward volatility surfaces? 
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We will then characterise the implied volatility smile at a given tenor by:

A volatility measure: σ0

A “skew” measure: χ = (σ+ - σ− ) / σ0 

A “convexity” measure: ω = (σ+ + σ− - 2σ0 ) / σ0

It is helpful to look at these quantities for a couple of real markets ( FTSE, ESX ).  Graphs are shown of the above 
three measures for a range of tenors ( 1mth through to 5yr ), and for three base dates:  19-Mar-01,   18-Sep-01, 18-
Mar-02.  The mid-date will illustrate the effect of a shock function on the equity markets.

Pricing Forward Starting Options (from D Samuel)
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Pricing Forward Starting Options (from D Samuel)
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Pricing Forward Starting Options (from D Samuel)
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Pricing Forward Starting Options (from D Samuel)
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Pricing Forward Starting Options (from D Samuel)
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Pricing Forward Starting Options (from D Samuel)
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Decay in FTSE implied volatility skew parameter, χ , under local volatility

Bottom line:  The use of Local Volatility methods for 
the pricing of forward starting options is inconsistent 
with the market perception of forward propagated 
skew. 

Stochastic volatility models also exhibit behaviour in 
contradiction of market expectation.



Pricing Forward Starting Options (from D Samuel)

An alternative modelling approach? …

Assume that the volatility surface can be characterised at a given time by the parametric 
curves: (σ0 , χ , ω) , 

Assume that the time evolution of these curves is stochastic, but characterised by some simple 
normal modes and a low number of Weiner processes (currently giving consideration to one 
and two-factor models).

Thus, if we had an interest in pricing a 1-Yr option starting in two years then we would need 
to evolve (σ0[1] , χ [1] , ω [1] ) two years under their respective SDE’s, and then evaluate 
the expectation value of the 1-Yr option under their respective distributions.



Assumptions and Set-Up

• Perfect market
• Traded Instruments: Calls [continuum of strikes + 

discrete maturities]+ Complex Product
• Price Information: underlying + all calls today
• Pricing Condition: existence of pricing measure today
• Definition of state of the world: underlying + prices of 

all calls and puts



Admissible Smile Surfaces

Definition (ADMISSIBLE SMILE SURFACE) Define a smile surface such that the associated call prices satisfy
∂Callt, T, S t , T

∂K
< 0   #   

∂2 Callt, T, S t , T
∂K 2 > 0   #   

∂Callt, T, S t , T
∂T

> 0   #   

∂Putt, T, S0 , T
∂K

> 0   #   

Callt, T, S t , T|K=0 = S t   #   

limK→∞Callt, T, S t ,K = 0   #   

an admissible smile surface.



Admissible Smile Surfaces

Admissible smile surfaces prevent the possibility that, for instance, 
more out-of-the-money calls should be worth more than more-in-
the-money calls; or require a strictly positive price density. For 
today's smile surface, the admissibility conditions are necessary 
and sufficient in order to rule out the possibility of static 
strategies constructed today that can be arbitraged

When the smile surface in question is in the future, however, I shall 
show that the admissibility conditions are necessary, but not 
sufficient for absence of model-independent arbitrage.



Present and Future Smile Surfaces

One can establish a one-to-one correspondence 
between the current set of prices, the current smile 
surface and the price density. 

The same relationship applies in the future (and the 
price density becomes conditional).

f 0ST  = ∂ 2Call0 S 0, K, t0 ,T
∂K 2 = ∂2BSS 0,K, t0, T, σ implt,T, K, S0

∂K 2   # (Eq1)  



Conditional State Densities

Definition (FUTURE CONDITIONAL RISK-NEUTRAL STATE DENSITY) The future (time−t) conditional
risk-neutral state density, Φ t XT |X t , is defined to be the risk-neutral probability density that the world will be in
state XT at time T given that state X t prevails at time t.

Remark The state of the world at time t can be equivalently described in terms of

i) the value at time t of the underlying plus the values of all the calls:

X t = St ∪ Call tS t, K , t, T,∀K, T   #   

ii) the value at time t of the underlying and the associated future (time-t) S t-conditional implied volatility surface:

X t = S t ∪ σ implt, T, K, S t ,∀K, T   #   

iii) the value at time t of the underlying and the associated future (time-t) S t -conditional risk-neutral density:

X t = S t ∪ f tS T |S t ∀T   #   



Price and State Densities Compared

• In general the future probability density of the stock 
price is not enough to determine the future prices of 
calls (eg, stochasticvolatility process)

• The state density contains much more information 
than the price density

• Under what conditions can one derive the state 
density from the price density?



Deterministic Smiles

Given an admissible smile surface today,a future, time-t 
conditional smile surface is said to be deterministic if the future 
smile surface can be expressed as a deterministic function of 
time, maturity, strike of the realization of the stock price at time t. 
Examples of deterministic smile surfaces:

• geometric-diffusion (Black-and-Scholes) process with constant 
and time dependent volatilities; 

• jump diffusion with constant or time-dependent coefficients;
• displaced diffusions (Rubinstein (1983)) and their 

generalizations such as displaced jump-diffusions; 
• Derman-Kani restricted-stochastic (local) volatility model;
• Variance Gamma process; etc. 



Consequences of Deterministic Smile Surfaces

If the future smile surface is deterministic, given the knowledge of the future value of S t the prices of all future calls are also
known. Therefore, the state X t is fully determined by St, and the (conditional and unconditional) price and state densities
coincide:

ΦX t = fS t   #   

ΦXT |X t = fS T |St   #   

Deterministic smile surfaces are important because they allow us to work with the much simpler price densities rather than
the state densitites. For any current price density, f 0S 0, and conditional deterministic price density, f tS T|S t, it is always
true that

f 0S T2  = ∫ f 0S T1 fT1 S T2 |S T1 dS T1   #   

Using Equation  ref: Eq1 one can therefore write:

f 0S T2  = ∂2BSS0 ,K, t0 , T2, σt0 , T2, S0 ,K
∂K 2   # (Eq4)  

f 0S T1  = ∂2BSS0 ,K, t0 , T1, σt0 , T1, S0 ,K
∂K 2   # (Eq5)  

fT1 S T2 |S T1  = ∂ 2BSS0 ,K,T 1,T 2 ,σT1 ,T 2 ,S T1 , K
∂K 2   # (Eq6)  



Kolmogorov-Compatible Smile Surfaces

In order to lighten notation, denote the operator

∂ 2BS
∂K 2   ≡ Θ    #   

Then Equation  ref: Eq6 can be re-written as

ΘS 0,K , t0, T2 ,σt0 , T2 ,S0 , K =   # (Eq3)  

∫ΘS0 ,K, t0 ,T1, σt0 ,T1 , S0, KΘS t , K,T1, T2 ,σT1 ,T2 , ST1 , KdST1

with ΘS 0 ,K, t0,T1 , σt0, T1 ,S0 ,K and ΘS 0 ,K, t0 ,T2 , σt0, T2, S0, K market-given, and
ΘS t ,K, T1 ,T2 , σT1, T2 , ST1 ,K is to be determined so as to satisfy Equation  ref: Eq3 .

Remark There is a one-to-one correspondence between the quantity
ΘS t , K,T1 , T2 , σT1 ,T2 , ST1 , K

and future conditional deterministic densities (conditional future smile surfaces). There is in general an
infinity of solutions

ΘS t , K,T1 , T2 , σT1 ,T2 , ST1 , K

such that Equation  ref: Eq3 is satisfied. Therefore, even if we require the smile surface to be deterministic,

there still exists an infinity of future smile surfaces compatible with today’s prices of calls and puts.

Definition (KOLMOGOROV COMPATIBILITY) Define any future deterministic conditional density or
smile surface such that Equation  ref: Eq3 is satisfied a Kolmogorov-compatible density .



Necessary Condition for Absence of Model-
Independent Arbitrage

• Given a current admissible smile surface, if all the 
future deterministic smile surfaces for times 
T1,T2,...,Tn are Kolmogorov compatible no model-
independent strategy revised on the same set of 
dates can generate arbitrage profits.

• The trader’s dream revisited



Conditions for Uniqueness of Kolmogorov-
Compatible Surfaces

• The equations obtained up to this point determine the 
links between the present and the future densities 
that must be satisfied by deterministic smile surfaces 
in order to avoid model-independent arbitrage. One 
extra condition is required in order to ensure 
uniqueness of the resulting conditional density. This 
condition is often implicitly assigned by popular 
process-based models, but can be stated explicitly in 
the present set-up



The Distance Condition

Condition (DISTANCE CONDITION) Let us assume that a Kolmogorov-compatible conditional
probability density is of the form

fST |S t = f ′PS T − PS t   # (Eq7)  

for some functions f ′ and P. If this is the case, the probability density is said to satisfy the distance

condition.

Equation  ref: Eq7 requires that the transition probability of the stock price at two different times should
only depend on the distance between (some function of) the starting and arrival points (whence the name
’Distance Condition’). If the function PS = S one recovers a normal diffusion for the underlying. If
PS = lnS one recovers a log-normal diffusion. If PS = S + α we are in the displaced-diffusion case; etc.

Remark The current price density can always be written as some function f 0
′ of PS0 . If the [DISTANCE

CONDITION] is satisfied, the current risk-neutral density for the function P of the underlying for time T2 ,
f ′, can be written as a convolution:

f 0
′ PT2  = ∫ f 0

′ PT1 f
′PT2 − P T1 dPT1 =

= f 0
′ PT1  ∗ f 0

′ PT2    #   

where the symbol ∗ indicates convolution, and, to lighten notation, we have denoted by PT1 the quantity

PST1 .



From the Distance to the Uniqueness Condition

Proposition Denote by F and F −1the Fourier and the inverse Fourier transform operators, respectively.
Then, given times T1 and T2 , if a soultion exists, there is a unique future deterministic time-T1 conditional
density (smile surface) for expiry at time T2 compatible with today’s state of the world/ (with todays’ prices
for plain-vailla calls and puts)/(with today’s smile surface). It is given by

fT 1
′ PT2 − PT 1 = F−1 

Ff0
′ PT2

Ff0
′ PT1

   #   

Therefore , under the [DISTANCE CONDITION], the future, conditional risk-neutral density, and, therefore,
the future conditional smile surface can be obtained from the market-given risk neutral densities. More
precisely, if the [DISTANCE CONDITION] is satisfied, for a given P, if a solution exists it is unique, i.e. there
exists a unique Kolmogorov-compatible future density.



Homogeneity Conditions

One of the potentially desirable conditions for a smile function is 
that it should be self-similar when the its arguments S{t} and t 
undergo certain transformations. In particular, we can ask the 
following questions: 

• What will the smile surface look like when the underlying 
changes?

• What will the smile surface look like when we move forward in 
time? 

The answer to the the first question leads to the concept of floating 
or sticky smiles. The second question is related to the existence 
or otherwise of an arbitrage-free forward-propagated smile.



Floating Smiles

The smile surface today, i.e. for a fixed S0, can always be written as a function, σ, of lnK/S 0  ≡ y0:

σ impl t0, T, K, S0 = σt0, T, lnK/S 0 = σt 0, T, y 0   #   

This observation is useful in establishing the following conditions, which are central to the treatment to follow.

Condition (STOCK HOMOGENEITY) Let us impose that the time-t smile surface is deterministic and that it
should be of the form

σ implt, T, K, S t = σt, T, y t   #   

with y t ≡ ln K
S t
 and σ the same function that describes the current smile surface.

Definition (FLOATING SMILE) A future deterministic smile surface such that Condition [STOCK
HOMOGENEITY] is satisfied for all t is called a floating smile surface .

Since the definition of deterministic smile surface requires that Condition [STOCK HOMOGENEITY] should
hold for any t, it must be true also for an instantaneous change in the stock price. This condition therefore directly
relates to the translation properties (in log space) of the smile surface with the stock price.



Arbitrage-Free Floating Surface

However, we do not know yet whether, and under which conditions , such a floating surface can exist
without allowing arbitrage. This would certainly be the case if there were a process that produces deterministic
floating smile surfaces, but we have not based our treatment on the specification of a particular process, and
we must, therefore , follow some other route. In our language, the condition necessary for the existence of a
deterministic floating smile is the following:

Proposition Let us assume that Conditions [STOCK HOMOGENEITY ] and [DISTANCE CONDITION]
are satisfied. If the conditional probability density is of the form fST |S t = ξlnS T − lnSt, i.e. if the
function P in remark 21 and Proposition 1 is given by P ≡ lnS (and f ′ is therefore the probability
density for lnS t, then the corresponding future smile surface is floating.

Remark All pairs K, S t such that their ratio is a constant (and for fixed t and T) produce the same value
for y t. Therefore, if the smile surface is floating, all such pairs K, S0 give rise to the same implied
volatility, and a set of call prices simply proportional to S t (given the homogeneity properties of the Black
and Scholes formula).



Forward-Propagated Smile Surfaces

Definition (FORWARD-PROPAGATED SMILE) Afloating smile surface such that the function that gives the
implied volatility a a function of rsidual maturity and strike is independent of calendare time is said to be
forward-propagated

Remark There is no guarantee, in general, that a forward-propagated smile will be Kolmogorov-compatible (ie, that
today’s prices admit a forward-propagated smile without allowing model-independent arbitrage opportunities). If the
trader felt that forward-propagation were a desirable property, she could try to find the future condition densities
(smile surfaces) that are Kolomogorov-compatible, and that are ’closest’ - given some suitably defined distance - to
forward-propagated densities (smile surfaces)



SummarizingSummarizing:
• Deterministic smile: There exists some function of maturity T, 

strike K and time t such that, conditional on the future stock 
price being known, the future smile surface is known today 
exaclty.

• Floating smile: There exists some function today of time t, 
maturity T and of the ratio y{t}=K/(S{t} in terms of which one 
can express today all the future smile surfaces 

• Forward-propagated smile: There exists some function today 
of residual maturity T and of the ratio y{t}=K/(S_{t} in terms of 
which one can express today all the future smile surfaces



Stochastic Smiles

We intend to describe the stochastc evolution of smiles, 
by describing today's smile as a function of a number 
of parameters, {a}, and by assigning a stochastic 
behaviour to these parameter. 

This is done as follows.



Condition (STOCHASTICITY) Let us impose that the future (time-t) conditional implied volatility
function, σimplt, T, K, St, should be a stochastic quantity, whose values depend on the realization of a
discrete set of random variables αt.

Condition (DISCRETENESS) Let us assume that the random variables α that determine the realization
of the future implied volatility surface (the future conditional density) can assume an arbitrary large but
finite number of values. Let π ij

t  denote the probability of i-th realization of the j-th parameter α at time t.

Remark The approach is superficially similar to that employed by Joshi and Rebonato (2001) in their
stochastic-volatility extension of the LIBOR market model. The important difference is that we assume in this
work that the parameters describing the implied volatility surface are stochastic. Joshi and Rebonato
(2001), on the other hand, assume that the parameters of the instantaneous volatility are stochastic. This
apparently minor difference ensures automatically that all the resulting future smile surfaces are
Kolmogorov-compatible, and arbitrage free.

Condition (INDEPENDENCE) Let us assume that future smile surface can be written as
σ impl

t = σt,T,y t;α t and that the values of these random variables α at time t should be independent of
yt:

Probαt|yt = Probαt → Probα t, yt = Probα tProbyt   #   



The Trader’s Dream Revisited

• As for Condition [STOCHASTICITY], the random 
variables {a} could be of very different nature: they 
could, for instance, be the second, third, fourth, etc. 
moments of a future probability density; they could be 
the future market prices of at-the-money volatilities, 
straddles and risk reversals; they could be the 
coefficients of a parametrically fitted density (see, 
e.g. Mirferndereski and Rebonato (2001), Samuel 
(2002)). All these interpretations are possible, as long 
as the random variables, however chosen, are 
independent of y{t}. 



Introducing Equivalent Deterministic Smile 
Surface

Remark If no arbitrage is to be allowed, a probability measure must exist such that the relative price of a
call today is given by the weighted expectation of the relative call price (payoff) at time t. Let us assume
that we are dealing with a stochatsic smile surface such that conditions [INDEPENDENCE] and
[STOCHASTICITY] are satisfied. Then, if the numeraire is chosen to be the (deterministic) discount bond
maturing at time T, Z0, T, one can write, for t ≤ T,

Call0 S 0 , T
Z0, t

= Zt,TEPCall t|ℑS ,α 0  =

Zt, T∑ π i ∫Call tS t, T, X itf 0 S tdS t =

= Zt, T∑ π i ∫ BSS t, t, T, σimplt, T, S t ,K;X itf 0S tdS t =

= Zt, T∑ π i ∫ BSS t, t, T,σ αi t,T ,y tf 0 S tdS t =

= Zt,T∑ π i ∫∫ST − K+ f tST |S t idSTf 0 S tdS t   # (Eq9)  

where

πi is the probability of the i-th realization of the multiplet α . Note carefully that the quantity y t depends
on the strike, K .



Equivalent Deterministic Smile Surface

If the smile is floating, the price of a call today in the presence of a stochastic floating smile
is identical to the price that would obtain with the single deterministic stock-homogeneous (floating) future
smile associated with the average conditional density f t ST |S t. Such as smile is called the equivalent
deterministic future smile.

Proof From Equation  ref: Eq9 , after interchanging the order of integration one obtains:

Call0 S0, T/Z0, T =

= ∑ π i ∫∫ST − K+ f tST |S t idS Tf 0S tdS t =

= ∫∑ π i ∫ST − K+ f tST |S t idS Tf 0S tdS t =

= ∫∫ST − K+ ∑ π if tST |S t idS Tf 0S tdS t =

= ∫∫S T − K+ f t S T|S tdSTf0S tdS t =

= ∫ BSS t, t, T, σ t,T, y tf0S tdS t   #   

where f t ST |S t is the average conditional density , and σ t, T,y t  the associated deterministic floating smile
(implied volatility).



Implications of the Existence of an Equivalent 
Deterministic Smile Surface

A variety of processes have been proposed in order to 
describe the stock price dynamics. Each of these 
processes gives rise to a set of future smile surfaces. In 
some cases these smile surfaces are deterministic, in 
other stochastic. 

A stochastic-smile-surface stock price process will 
produce prices for calls and puts different from the 
prices from the equivalent deterministic future smile 
only to the extent that it produces stochastic future 
smiles which are not independent of the future 
realization of the stock price.



Extension to Displaced Diffusions

• Empirical observations indicate that there exists a negative 
correlation between the future level of smile surfaces and of 
stock prices. This would seem to invalidate one of the 
crucial conditions of the approach outlined above.

• If the dependence is relatively simple, however, the 
approach can sometimes be rescued by a simple change of 
variables. One possible way to do this is to recast the 
distance condition in terms of a function other than ln(S_{t}). 
Another attractive route is to employ the approximate but 
accurate equivalence between CEV process and displaced-
diffusion processes (Marris, Rubinstein). 



The Path to Displaced Diffusions

Logical Steps:
• Restrict local volatility functions to power-law 

dependence of the volatility on the stock price (CEV 
models)

• Exploit the approximate but accurate equivalence 
between CEV processes and displaced diffusion 
processes



Recasting the treatment in a DD framework

Definition Define the present or future a-displaced implied volatility, σ impl
a , as the quantity that, input

in the Black-and-Scholes formula with S + a as spot and K + a as strike produces the value of a call
with spot equal to S and strike equal to K. Also, define

y t
a ≡ ln K + a

S t + a
   #   

Mutatis mutandis, the treatment presented above can be re-cast in terms of the new quantity y t
a .

Clearly, the distance condition is now expressed in terms of the function lnS t + a.



Limitations of the Approach

Consider stochastic-volatility process with the 
innovation in the volatility independent of the 
innovation in the stock price

Assume that at time T the stock price is ‘much higher’ 
(lower) than its value today

What is the likelihood that the volatility at time T is also 
very high?

What does this imply for
• the level of the future smile surface
• the slope of the future smile surface?



Conditional expectation of future volatility as a 
function of future realization of stock price

19.80%

20.00%

20.20%

20.40%

20.60%

20.80%

21.00%

21.20%

21.40%

21.60%

50 70 90 110 130 150 170

Series1


